14.5 Estimators for Parameters of Drop-size Distribution Functions: Sampling from Gamma Distributions

نویسندگان

  • Donna Kliche
  • Paul Smith
  • Roger W. Johnson
چکیده

This work represents a continuation in the investigation of techniques to estimate the parameters for raindrop-size-distribution (DSD) functions. Although moment estimators are often used to estimate these parameters, our previous work (Smith and Kliche, 2005; Smith et al., 2005) showed that the method of moments produces biased results that can lead to misleading extrapolations, and that the resulting functions often do not represent correctly the drop populations. These findings triggered our interest in searching for more robust parameter-fitting techniques. In the present paper we describe some findings of our investigation using Maximum Likelihood (ML) estimators as an alternative to the moment method. The ML method is asymptotically unbiased and seeks to find the parameter values of the assumed gamma size distribution function by maximizing the likelihood function. Monte Carlo simulation of raindrop sampling with various sample sizes was considered in this investigation. In cases where the data encompassed the full range of raindrop sizes, the ML method gave better estimates for the parameters of the gamma DSD function than the moment method. We also investigated the case of poor instrument response at small raindrop sizes by removing the drops smaller than a given threshold from all samples. The MLE parameter values are quite sensitive to missing observations of small drops, and the method of moments often gave superior results in estimating the parameters for the gamma function in these situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

Stochastic Comparisons of Probability Distribution Functions with Experimental Data in a Liquid-Liquid Extraction Column for Determination of Drop Size Distributions

The droplet size distribution in the column is usually represented as the average volume to surface area, known as the Sauter mean drop diameter. It is a key variable in the extraction column design. A study of the drop size distribution and Sauter-mean drop diameter for a liquid-liquid extraction column has been presented for a range of operating conditions and three different liquid-liquid sy...

متن کامل

Mixed Estimators of Ordered Scale Parameters of Two Gamma Distributions with Arbitrary Known Shape Parameters

When an ordering among parameters is known in advance,the problem of estimating the smallest or the largest parametersarises in various practical problems. Suppose independent randomsamples of size ni drawn from two gamma distributions withknown arbitrary shape parameter no_i > 0 and unknown scale parameter beta_i > 0, i = 1, 2. We consider the class of mixed estimators of 1 and 2 under the res...

متن کامل

Admissible Estimators of ?r in the Gamma Distribution with Truncated Parameter Space

In this paper, we consider admissible estimation of the parameter ?r in the gamma distribution with truncated parameter space under entropy loss function. We obtain the classes of admissible estimators. The result can be applied to estimation of parameters in the normal, lognormal, pareto, generalized gamma, generalized Laplace and other distributions.

متن کامل

On Bivariate Generalized Exponential-Power Series Class of Distributions

In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006